Dynamic Job Shop Scheduling Under Uncertainty Using Genetic Programming
نویسندگان
چکیده
Job shop scheduling(JSS) is a hard problem with most of the research focused on scenarios with the assumption that the shop parameters such as processing times, due dates are constant. But in the real world uncertainty in such parameters is a major issue. In this work, we investigate a genetic programming based hyper-heuristic approach to evolving dispatching rules suitable for dynamic job shop scheduling under uncertainty. We consider uncertainty in processing times and consider multiple job types pertaining to different levels of uncertainty. In particular, we propose an approach to use exponential moving average of the deviations of the processing times in the dispatching rules. We test the performance of the proposed approach under different uncertain scenarios. Our results verified the effectiveness of the newly developed terminal when the level of uncertainty is not high. In addition, the training configuration selection has an important impact on the generalisation of the evolved rules.
منابع مشابه
A New Multi-objective Job Shop Scheduling with Setup Times Using a Hybrid Genetic Algorithm
This paper presents a new multi objective job shop scheduling with sequence-dependent setup times. The objectives are to minimize the makespan and sum of the earliness and tardiness of jobs in a time window. A mixed integer programming model is developed for the given problem that belongs to NP-hard class. In this case, traditional approaches cannot reach to an optimal solution in a reasonable...
متن کاملThe Dynamic Job Shop Scheduling Approach Based on Data-Driven Genetic Algorithm
Rapid development of the Internet of Things not only provides large amounts of data to the job-shop scheduling, but also proposes a great challenge for dynamic job shop scheduling. A dynamic job shop scheduling approach is proposed based on the data-driven genetic algorithm. Application examples suggest that this approach is correct, feasible and available. This approach can provide the technic...
متن کاملFlow Shop Scheduling Problem with Missing Operations: Genetic Algorithm and Tabu Search
Flow shop scheduling problem with missing operations is studied in this paper. Missing operations assumption refers to the fact that at least one job does not visit one machine in the production process. A mixed-binary integer programming model has been presented for this problem to minimize the makespan. The genetic algorithm (GA) and tabu search (TS) are used to deal with the optimization...
متن کاملSolving the Dynamic Job Shop Scheduling Problem using Bottleneck and Intelligent Agents based on Genetic Algorithm
The problem of Dynamic Job Shop (DJS) scheduling is one of the most complex problems of machine scheduling. This problem is one of NP-Hard problems for solving which numerous heuristic and metaheuristic methods have so far been presented. Genetic Algorithms (GA) are one of these methods which are successfully applied to these problems. In these approaches, of course, better quality of solutions...
متن کاملGenetic Programming Based Hyper-heuristics for Dynamic Job Shop Scheduling: Cooperative Coevolutionary Approaches
Job shop scheduling (JSS) problems are optimisation problems that have been studied extensively due to their computational complexity and application in manufacturing systems. This paper focuses on a dynamic JSS problem to minimise the total weighted tardiness. In dynamic JSS, jobs’ attributes are only revealed after they arrive at the shop floor. Dispatching rule heuristics are prominent appro...
متن کامل